[1] Oliver C. Gorton et al. “dmscatter: A fast program for WIMP-nucleus scattering”. In: Comput. Phys.
Commun. 284 (2023), p. 108597. doi: 10.1016/j.cpc.2022.108597. arXiv:2209.09187 [nucl-th].
[2] T. M. Graham et al. “Multi-qubit entanglement and algorithms on a neutral-atom quantum com-
puter”. In: Nature 604.7906 (2022), pp. 457–462. doi: 10.1038/s41586-022-04603-6. arXiv:
2112.14589 [quant-ph].
[3] P. Huft et al. “Simple, passive design for large optical trap arrays for single atoms”. In: Phys. Rev. A
105.6 (2022), p. 063111. doi: 10.1103/PhysRevA.105.063111. arXiv: 2204.07788 [quant-ph].
[4] Pooja Siwach and P. Arumugam. “Quantum computation of nuclear observables involving linear com-
binations of unitary operators”. In: Phys. Rev. C 105.6 (2022), p. 064318. doi: 10.1103/PhysRevC.
105.064318. arXiv: 2206.08510 [quant-ph].
[5] Michael J. Cervia et al. “Collective neutrino oscillations with tensor networks using a time-dependent
variational principle”. In: Phys. Rev. D 105.12 (2022), p. 123025. doi: 10.1103/PhysRevD.105.123025. arXiv: 2202.01865 [hep-ph].
[6] Denis Lacroix et al. “Role of non-Gaussian quantum fluctuations in neutrino entanglement”. In:
Phys. Rev. D 106.12 (2022), p. 123006. doi: 10.1103/PhysRevD.106.123006. arXiv: 2205.09384
[nucl-th].
[7] Pooja Siwach, Anna M. Suliga, and A. Baha Balantekin. “Entanglement in three-flavor collective
neutrino oscillations”. In: Phys.Rev.D 107 023019 (2023) doi: 10.1103/PhysRevD.107.023019. arXiv: 2211.07678 [hep-ph].
[8] M. Saffman et al. “Symmetric Rydberg controlled-Z gates with adiabatic pulses”. In: Phys. Rev. A
101.6 (2020), p. 062309. doi: 10.1103/PhysRevA.101.062309. arXiv: 1912.02977 [quant-ph].
[9] Jordan M. R. Fox, Calvin W. Johnson, and Rodrigo Navarro Perez. “Uncertainty quantification of an
empirical shell-model interaction using principal component analysis”. In: Phys. Rev. C 101.5 (2020),
p. 054308. doi: 10.1103/PhysRevC.101.054308. arXiv: 1911.05208 [nucl-th].
[10] Michael J. Cervia et al. “Lipkin model on a quantum computer”. In: Phys. Rev. C 104.2 (2021),
p. 024305. doi: 10.1103/PhysRevC.104.024305. arXiv: 2011.04097 [hep-th].
[11] Amol V. Patwardhan, Michael J. Cervia, and A. B. Balantekin. “Spectral splits and entanglement
entropy in collective neutrino oscillations”. In: Phys. Rev. D 104.12 (2021), p. 123035. doi: 10.1103/
PhysRevD.104.123035. arXiv: 2109.08995 [hep-ph].
[12] Kenneth Robbins and Peter J. Love. “Benchmarking near-term quantum devices with the variational
quantum eigensolver and the Lipkin-Meshkov-Glick model”. In: Phys. Rev. A 104.2 (2021), p. 022412.
doi: 10.1103/physreva.104.022412. arXiv: 2105.06761 [quant-ph].
[13] Pooja Siwach and Denis Lacroix. “Filtering states with total spin on a quantum computer”. In:
Phys. Rev. A 104.6 (2021), p. 062435. doi: 10.1103/PhysRevA.104.062435. arXiv: 2106.10867
[quant-ph].
[14] F. Robicheaux, T.M. Graham, and M. Saffman. “Photon-recoil and laser-focusing limits to Rydberg
gate fidelity”. In: Phys Rev. A 103 (2021), p. 022424. doi: 10.1103/PhysRevA.103.022424. arXiv:
2011.09639 [quant-ph].
[15] L. C. G. Govia et al. “Freedom of mixer rotation-axis improves performance in the quantum approxi-
mate optimization algorithm”. In: Phys Rev. A 104 (2021), p. 062428. doi: 10.1103/PhysRevA.104.
062428. arXiv: 2107.13129 [quant-ph].
[16] A. B. Balantekin. “Quantum Entanglement and Neutrino Many-Body Systems”. In: J. Phys. Conf.
Ser. 2191.1 (2022), p. 012004. doi: 10.1088/1742-6596/2191/1/012004.
[17] Michael Cervia. “Many-body Theory of Collective Neutrino Oscillations”. PhD thesis. Madison, WI,
2021.
[18] Kenneth Robbins. “Quantum Circuits for Eigenstate Preparation of Exactly Diagonalizable Models”.
PhD thesis. Medford, MA, 2022
[19] Pete Barry et al. “Opportunities for DOE National Laboratory-led QuantISED Experiments”. In: (Feb. 2021). https://arxiv.org/abs/2102.10996 [physics.ins-det].
[20] Christian W. Bauer et al. “Quantum Simulation for High Energy Physics”. In: (Apr. 2022). arXiv:2204.03381 [quant-ph].